
Int. J. Advanced Networking and Applications

Volume: 11 Issue: 02 Pages: 4236-4243 (2019) ISSN: 0975-0290

4236

Collaborative Methods to Reduce the Disastrous

Effects of the Overlapping ON Problem in DASH
Koffka Khan

Department of Computing and Information Technology The University of the West Indies, Trinidad and Tobago, W.I

Email: koffka.khan@gmail.com

Wayne Goodridge

Department of Computing and Information Technology The University of the West Indies, Trinidad and Tobago, W.I

Email: wayne.goodridge@sta.uwi.edu.com

--ABSTRACT--
The performance of today’s adaptive video streaming players (DASH) is severely hindered by overlapping ON-OFF patterns that

occurs during a streaming session. High switching rates, freezing and skipping annoy users resulting in poor user-QoE.

This paper attempts to overcome the ON-OFF problem by keeping players aware of each other’s downloads and

inter-request times. Using this a player is able to better predict future player actions and reschedule their downloads

to produce least conflicts with others. If a player’s start segment download overlaps with the end of one or more

players’ current downloads within a certain time t1 it waits until the download of others completes before starting its

own download. Conversely if too many players are sharing the bottleneck link a player will hold of its download by a

time t2 enabling others to move towards completion of their downloads. This reduces the overlap of its download with

other players. Both these methods help reduce competition at the bottleneck and produces a more balanced sharing of

network resources.

Keywords – DASH; overlapping; ON-OFF; streaming; user-QoE; bottleneck; link; network; resources; DASH.

--

Date of Submission: Aug 30, 2019 Date of Acceptance: Sep 26, 2019

--

I. INTRODUCTION

Video over IP (VoIP) is becoming more and more

important as we move further into the twenty-first century.

The Internet is still growing rapidly and more uses are

being found for video users. These include real-time

online visual assistance, video learning, live event

streaming, smart HDTVs, mobile phones, gaming devices,

computers and visual communication among others. As

the content quality is improving to meet end-user demands

the bandwidth requirement for such devices is rapidly

increasing. With increasing bandwidth demands and

profuse video content, it is becoming likely that two or

more adaptive streaming players may have to share a

network bottleneck. This will result in a competition for

available bandwidth. Example scenarios where this can

take place are, when a number of people in the same

household view similar or different videos simultaneously.

Here, the domestic broadband access link is the shared

bottleneck. Another instance of such competition is when

many users watch the same live event (such as World Cup

Soccer) online. The shared bottleneck may be an edge

network link in this scenario. It has been previously

observed that such competition can lead to performance

issues [2] [1] [16] [13].

The concept of adaptive video streaming (see Figure 1) is

based on the idea to adapt the bandwidth required by the

video stream to the throughput available on the network

path from the stream source to the client [1]. These

algorithms can live at the server [15], at an intermediate

network device [15] or at the client [16]. With client-side

protocols it is the player that decides what bitrate to

request for any fragment, improving server-side scalability

[15]. A benefit of this protocol is that the player can

control its playback buffer size by dynamically adjusting

the rate at which new fragments are requested. The

adaptation is performed by varying the quality of the

streamed video.

Fig. 1. DASH-based Adaptive Video Streaming

Multiple video segments constitute a video stream lasting

from as little as 2 seconds to as much as having a 10

second chunk delivery rate. Segments are encoded and

stored on the server in numerous quality versions, termed

representations. Each version has a unique resolution,

bitrate and/or quality. A client downloads segments using

HTTP GET statements [4]. However, with adaptive

streaming a client might request subsequent segments at

different quality levels to manage varying network

conditions, based on an estimation bandwidth. To do this it

uses a manifest file that contains information about the

video segments. Protocols and standards such as MPEG

Dynamic Adaptive Streaming over HTTP (DASH) [27],

Apple HTTP Live Streaming (HLS) [21], Microsoft

Smooth Streaming (MSS) [6] or Adobe HTTP Dynamic

Streaming (HDS) [32] typically use a media playlist that

contains a list of uniform resource identifiers (URIs) that

are addresses to media segments [1].

The process of determining the ideal representation for

each segment to enhance the user’s experience is pivotal to

adaptive streaming. The controller algorithm estimates the

Int. J. Advanced Networking and Applications

Volume: 11 Issue: 02 Pages: 4236-4243 (2019) ISSN: 0975-0290

4237

network bandwidth and chooses the next bitrate level

corresponding to the available network bandwidth.

Variations in the available bandwidth will result in jerky

playback and disruption of the video playback if the

throughput falls below the bit rate requirement of the

video. This is the major challenge in adaptive video

streaming [15]. Selecting appropriate bitrate levels helps

to maximize the user experience. Generally, higher bitrates

and resolutions will give better user experience. For

example, if a client approximates that there is 9.5Mb/s

available in the network, it might request the server to

stream video compressed to the highest video rate

available, 9.5Mb/s, or the next rate below, 9.3Mb/s. If the

client picks a video rate that is too high, the viewer will

experience annoying re-buffering events; if they pick a

streaming rate that is too low, the viewer will experience

poor video quality. In both cases, the experience degrades

[23] [3] [9] and user may take their viewing elsewhere. It

is therefore important for a video streaming service to

select the highest safe video rate [33].

To the authors review of existing literature there is no

known findings of adaptive streaming players with

collaborative player-to-player communications (see Figure

2) with preemptive and non-preemptive scheduling. We

propose, implement and test two collaborative

communication methods (CCMs) for DASH-based

players. It primarily aims to obtain better fair sharing of

resources in streaming environments for example a

company’s local area network (LAN).

Fig. 2. Collaborative DASH-based Adaptive Video

Streaming

In Section II we provide a literature review. We describe

DASH-based adaptive video players. Some of these

players are part of our experiments which is presented in

later sections. This work provides a body of work that

builds on DASH overlapping ON problem which is

presented in Section III. It provides a detailed

methodology on the collaborative methods on which this

work is based on in Section IV. This is followed by the

experimental setup in Section V. Results is given in

Section VI. Finally, in Section VII we present the

conclusion.

II. LITERATURE REVIEW

FINEAS (Fair In-Network Enhanced Adaptive Streaming)

is proposed [24], which is capable of increasing clients’
Quality of Experience (QoE) and achieving fairness in a

multi-client setting. A key element of their protocol is an

in-network system of coordination proxies in charge of

facilitating fair resource sharing among clients. They

claim that fairness is achieved without explicit

communication among clients. In addition, viewers using

HTTP Adaptive Streaming (HAS) without sufficient

bandwidth undergo frequent quality switches that hinder

their watching experience. This situation, known as

instability, is produced when HAS players are unable to

accurately estimate the available bandwidth. Moreover,

when several players stream over a bottleneck link, their

individual adaptation techniques may result in an unfair

share of the channel. These are two detrimental issues in

HAS technology, which is otherwise very attractive. The

authors [17] describe an implementation in the form of an

HTTP proxy server and show that both stability and

fairness are strongly improved. In [6] several network-

assisted streaming protocols which rely on active

cooperation between video streaming applications and the

network are explored. They use a Video Control Plane

which enforces Video Quality Fairness among concurrent

video flows generated by heterogeneous client devices. A

max-min fairness optimization problem is solved at run-

time. They compare two protocols to actuate the optimal

solution in an SDN network: the first one allocating

network bandwidth slices to video flows, the second one

guiding video players in the video bitrate selection.

In [26] the bandwidth estimate generated at the server is

used for server-side adaptive bit encoding of digital media

streams. The server application measures the network

bandwidth available to the individual client for TCP/IP

[14] downloads of media and accordingly adjusts stream

bit rate and composition to allow the client to retrieve the

media stream with sufficient time margin to minimize the

occurrence of underflow of client playback buffers. The

root cause of the instability problem is that, in Steady-

State, a player goes through an ON-OFF activity pattern in

which it overestimates the available bandwidth [1]. They

propose a server-based traffic shaping procedure that can

considerably lower such oscillations. Their procedure is

only triggered when oscillations are identified, and so the

shaping rate is dynamically adjusted. This ensures that the

player receives the highest available video profile without

being unstable. Using HTTP for video streaming

significantly increases the request overhead due to the

segmentation of the video content into HTTP resources

[30]. This overhead becomes even more substantial when

non-multiplexed video and audio segments are deployed.

The authors investigate the request overhead problem by

employing the server push technology in the new HTTP

2.0 protocol. They develop a set of push strategies that

actively deliver video and audio content from the HTTP

server without requiring a request for each individual

segment.

Chunk scheduling with stateless bitrate selection causes

feedback loops, bad bandwidth estimation, bitrate switches

and unfair bitrate choices [12]. This paper, which portrays

the FESTIVE control algorithm, confirms that numerous

problems occur when multiple bitrate-adaptive players

(adaptation over HTTP) share a bottleneck link [31]. It

uncovers the fact that the feedback signal the player

Int. J. Advanced Networking and Applications

Volume: 11 Issue: 02 Pages: 4236-4243 (2019) ISSN: 0975-0290

4238

receives is not a true reflection of the network state

because of overlaying the adaptation logic over several

layers. HTTP-based video delivery issues are elucidated:

(1) the granularity of the control decisions, (2) the

timescales of adaptation, (3) the nature of feedback from

the network and (4) the interactions with other

independent control loops in lower layers of the

networking stack. FESTIVE uses an abstract player state

to analyze commercial players: (1) schedule a video chunk

for download, (2) select bitrate for chunk, and (3) estimate

bandwidth. It identifies root causes of undesirable

interactions with abstract state player framework and saw

the need to guide the tradeoffs between stability, fairness

and efficiency. As a result, the authors created a robust

video adaptation algorithm, which tried to achieve: (1)

Fairness – equal allocation of network resources, (2)

Efficiency – get highest bitrates for maximum user

experience, and (3) Stability – avoid needless bitrate

switches. The eventual contributions were a family of

adaptation algorithms using the following steps: (1)

Randomized chunk scheduling: to avoid sync biases in

network state sampling, (2) Stateful bitrate selection: to

compensate between biased bitrate and estimated

bandwidth interaction, (3) Delayed update: to account for

stability and efficiency tradeoff, and (4) Bandwidth

estimator: to increase robustness to outliers.

The authors in [18], who proposed the PANDA algorithm,

noted that since TCP throughput observed by a client

would indicate the available network bandwidth, it could

be used as a reliable reference for video bitrate selection.

However, this is no longer true when HTTP Adaptive

Streaming (HAS) [5] becomes a substantial fraction of the

total network traffic or when multiple HAS clients

compete at a network bottleneck. It was observed that the

discrete nature of the video bitrates results in difficulty for

a client to correctly perceive its fair-share bandwidth.

Hence, this fundamental limitation would lead to video

bitrate oscillation and other undesirable behaviors that

negatively impact the video viewing experience. They

offered a design at the application layer using a “probe and

adapt” principle for video bitrate adaptation (where

“probe” refers to trial increment of the data rate, instead of

sending auxiliary piggybacking traffic), which is akin, but

also orthogonal to the transport-layer TCP congestion

control. The authors illustrate a four-step state for an HAS

rate adaptation algorithm: (1) Estimating: the algorithm

starts by estimating the network bandwidth that can

legitimately be used, (2) Smoothing: is then noise-filtered

to yield the smoothed version, with the aim of removing

outliers, (3) Quantizing: the continuous is then mapped to

the discrete video bitrate, possibly with the help of side

information such as client buffer size [29] [10] [20] etc…,

and (4) Scheduling: the algorithm selects the target

interval until the next download request. The advantages

of PANDA are as follows. Firstly, as the bandwidth

estimation by probing is quite accurate, one does not need

to apply strong smoothing. Secondly, since after a

bandwidth drop, the video bitrate reduction is made

proportional to the TCP throughput reduction, PANDA is

very sensitive to bandwidth drops.

III. OVERLAPPING ON PROBLEM

In a DASH model the video is pre-encoded and stored on

the server. Each video stream is broken up into segments

or chunks of seconds each. The streaming process for each

client is divided into sequential segment downloading

steps. Variable durations between consecutive segment

requests is incorporated in the model. At the beginning of

downloading of each sequence two important decisions are

made: (1) the video bitrate of the next segment to be

downloaded, and (2) the target inter-request time. The

client also determines the time it takes to download the nth

segment. If the download duration is shorter than the

target delay, the client has an off time or wait time.

Otherwise, the download starts immediately.

The output of adaptive video players following the DASH

model can be either that the next segment download starts

immediately after the current download is finished

(buffering mode) or that the inter-request time is set to a

fixed duration which forces OFF periods (steady-state

mode). The main drawback of DASH is that when there

are competing video flows, the estimated bandwidth based

on the observed TCP throughput during the on-intervals

does not represent the fair-share bandwidth. Possible use-

cases that result from improper bandwidth estimation are:

(1) where competing players overestimate their fair share,

they may request video representations with a higher

bitrate than the fair share which leads to network

congestion. When TCP detects congestion, the players in

turn estimate lower bandwidth than their previous fair

share estimate and select a lower video bitrate level. This

environment creates a repeating oscillatory scenario and

results in instability. (2) where some players overestimate

their fair share while others underestimate their fair share.

In this situation players may converge to a stable

equilibrium but without fair allocation of bandwidth. (3)

where players estimate their fair share correctly but yet the

total bandwidth capacity of the network is not utilized.

This occurs as players may be requesting sub-optimal

video bitrate levels.

We now give various multi-player scenarios of bandwidth

allocation issues that arises when ON periods overlap. Let

us consider a simple model. Assume that players are in

steady state. There is a request for a new segment every T

seconds. There are three adaptive players sharing a

bottleneck with bandwidth B. We ignore the TCP model

and accept a single connection getting the entire

bandwidth B. Let us assume the network bandwidth share

is equal. We let network bandwidth measures at the player

be bi. Thus, for equal sharing of bandwidth the following

condition holds: b1=b2=b3. Therefore, b1+b2+b3=B,

anytime during the streaming process.

First, take the case of non-overlapping ON periods. This is

where all players ON periods are non-overlapping during

segment download, see Figure 1. Each player measures the

bandwidth as B. Thus, b1+b2+b3>B. Consequently, each

player overestimates their bandwidth share by a factor of

three. Players request higher bitrates than the channel

provides. Network congestion occurs. Players now

measure a smaller bandwidth, which is less than their

previous estimate. They switch back to a lower video

Int. J. Advanced Networking and Applications

Volume: 11 Issue: 02 Pages: 4236-4243 (2019) ISSN: 0975-0290

4239

bitrate by requesting a lower quality segment. The up and

down movement in bitrate selection creates a repeating

oscillatory scenario. Instability is the outcome.

Fig. 3. Non-overlapping ON periods

In the second case, we look at ON periods that fall within

each other. In multi-player streaming, the situation can

arise, where the ON period of one player falls within the

ON period of the other players, see Figure 2. This situation

occurs if one or two player requests a segment with a low

bitrate and another player requests a segment with a high

bitrate. The players requesting the lower bitrate estimates a

bandwidth of B/3, while the other player estimates a

bandwidth that is more than B/3. This means that player

three overestimates the bandwidth. This overestimation by

one of the three players can still result in the three players

converging to a stable equilibrium. However, the player

who estimates the higher bandwidth share requests a

higher video bitrate. This creates an unfair bandwidth

allocation to all players. The players who request low

bitrates will experience buffer underruns and poor video

quality, due to flickering.

Fig. 4. ON periods within each other

For the third and final case we look at ON periods in

perfect alignment. This situation occurs where ON periods

of the three players align perfectly, see Figure 3. All

players estimate a bandwidth of B/3. Thus, b1+b2+b3=B.

The three players estimate their bandwidth share correctly.

However, bandwidth underutilization still occurs. To

illustrate, suppose the video has two quality levels, q1 and

q2. The ON periods of all three players align perfectly.

This case is stable, if b1<B/3, b2>B/3, b3<B/3 and

b1+b2+b3<B. However, all players request quality level q1.

This causes bandwidth underutilization, even though it is

stable and fair. The players who obtain low bandwidth will

experience buffer underruns and poor video quality, due to

flickering.

Fig. 5. Perfectly aligned ON periods

IV. COLLABORATIVE METHODOLOGY

When an adaptive video player starts a download, it

broadcasts a 5-tuple to other players. This 5-tuple consists

of (1) start download time, (2) requested segment

download size, (3) inter-request time from last download,

(4) player ID or IP address and (5) a message sequence

number. During streaming this broadcast is performed by

all players. Each player utilizes this information to

determine (1) the approximate time the specified player

would take to download the current segment, that is, the

end download time, (2) the future inter-request time of the

present download. This is simply the last inter-request

time but could be made more accurate by taking multiple

download samples for example 20. (3) the freshness of the

data from other players which is obtained from the most

recent broadcasted sequence numbers.

Using the 5-tuple information from other players each

player performs cognitive download scheduling. It does

this by using the known player start times. Having this

knowledge enables a player to determine bottleneck

conflicts if too many players are currently using the link.

The player then adopts a strategy by waiting t seconds

before it starts its download. This should reduce player

contention for the bottleneck at that time stamp. Figure 6

shows an example. Here player i’ has started a download

and informed player i. Now player i can use this

knowledge to delay its next segment download (assuming

it does so with other players in the network being taken

into consideration (not shown in diagram)).

Fig. 6. Cognitive download scheduling

In addition, each player performs predictive downloading

scheduling. It does this by utilizing the estimated player

end times or inter-request times. A player waiting to

download can use the estimated end download times or

inter-request times to determine when to best start its next

download. In this case instead of knowing the other

players start download times the player may only

determine that the other players are either still

downloading or have just completed. If the other players

are still downloading, then the player only has the

estimated end download times. However, if the player had

just finished downloaded the player can estimate the next

start download time. In this way the player can delay its

download by t seconds to reduce contention at the

Int. J. Advanced Networking and Applications

Volume: 11 Issue: 02 Pages: 4236-4243 (2019) ISSN: 0975-0290

4240

bottleneck link. Figure 7 shows player i downloading a

video segment. Here player i’ has to estimate the end

download time of player i. It does this and starts it

download a bit later (diagram does not show other players)

to avoid network contention amongst players.

Fig. 7. Predictive download scheduling

The main constituents of an Linear Programming (LP)

problem are the objective function and set of constraints.

The constraints usually come from the environment, from

which the pursuit of the objective becomes tangible. The

environment contains principal factors (for instance

restrictions, difficulties) obstructing an entity from fulling

its desire or objective. The of four parts of any linear

program are: (1) a set of decision variables, (2)

parameters, (3) objective function and (4) a set of

constraints. The contention resolution for each player is

solved using a series on linear programming constraints

with the optimal funcion maximizing the bandwidth. We

call our solution collaborative DASH (C-DASH).

V. EXPERIMENTAL SETUP

A. Details of DASH-based Experiment Setup

A virtual network is setup on the same host machine

creating a custom emulation framework. Our setup

consists of client players, video servers, and a bottleneck

link. The server resides on a Windows 10 machine. All

experiments are performed on a Windows 10 client with

an Intel(R) Core(TM)i7-5500U CPU 2.40GHz processor,

16.00 GB physical memory, and an Intel(R) HD Graphics

processor. It serves video data to the client(s) who are on a

Ubuntu operating system hosted on VMware. The virtual

machine is allocated 12GB of physical memory. TAPAS is

installed on Ubuntu 15.04 Linux. The TAPAS [7]

Adaptive Video Controller client makes different video

segment bitrate level requests to the Apache server.

TAPAS allow multiple instances of the player to be

created enabling multi-client scenarios. This work

involves the interaction between adaptive streaming

algorithm at the controller and TAPAS player (cf. Figure

6). All traffic between clients and servers go through the

bottleneck, which uses VMware settings which allow

bandwidth limits to be set during the experiment. TAPAS

support both the HTTP Live Streaming (HLS) and

Dynamic Adaptive Streaming over HTTP (DASH) format.

Algorithms that uses the C-DASH protocol was tested and

shown to work on both MPEG-DASH [28], and Apple

HTTP Live Streaming (HLS) [25]. This makes it useful

for video on demand (VOD) [22] and live streaming [19],

for example, real-time video chats. However, the MPEG-

DASH standard is used for testing in this research paper,

because it makes the experiments more comparable to the

ones in the research literature, for example, [8]. The ten

minute long MPEG-DASH video sequence “Elephant’s

Dream”1 is encoded at twenty different bitrates, between

46 Kbps to 4200Kbps and five different resolutions,

between 320x240 to 1920x1080, is used to run the

experiments (cf. Table II). The video is encoded at 24

frames per second (fps) using the AVC1 codec [11].

Fragment duration of 2s is used, and is recorded in the

mpd playlist accordingly. All the DASH files (.m4s

fragments and .mpd playlists) are placed on the Apache

server. We implemented three client-side algorithms in the

TAPAS controller. The conventional approach is present

by default, and is used as a baseline in which to compare

against other algorithms. TAPAS is lightweight in built,

thus allowing the same receiving host to run a large

number of separate video player instances at the same time

at different command line interfaces. Thus, it allows the

multi-client scenarios which are essential to the work in

this paper.

B. QoE Metrics

i. The utilization metric [18] is defined as the

aggregate throughput during an experiment

divided by the available bandwidth in that

experiment (cf. Equation 6, where 𝑡𝑝𝑖 is the

throughput at time 𝑖 and 𝑏𝑤 is the experimental

available bandwidth).

 𝑈𝑡𝑖𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛 = ∑ 𝑡𝑝𝑖𝑛−1𝑖=0𝑏𝑤 (6)

ii. Instability: The instability for player 𝑖 at time 𝑡 is

given in Equation 7, where 𝑤(𝑑) = 𝑘 – 𝑑 is a
weight function that puts more weight on more
recent samples. 𝑘 is selected as 20 seconds.

 𝐼𝑛𝑠𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦 = ∑ |𝑟𝑖,𝑡−𝑑 − 𝑟𝑖,𝑡−𝑑−1| ∗ 𝑤(𝑑)𝑘−1𝑑=0 ∑ 𝑟𝑖,𝑡−𝑑𝑘−1𝑑=0 ∗ 𝑤(𝑑) (7)

iii. Inefficiency: The inefficiency at time 𝑡 is given in
Equation 8. Consider N players sharing a
bottleneck link with bandwidth, 𝑤, with each

player 𝑥, playing a bitrate, 𝑏𝑥,𝑡, at time 𝑡. A value

close to zero implies that the players in aggregate
are using as high an average bitrate as possible to
improve user experience. 𝐼𝑛𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 = |∑ 𝑏𝑥,𝑡− 𝑊𝑥 𝑤 | (8)

iv. Unfairness: Let 𝐽𝑎𝑖𝑛𝐹𝑎𝑖𝑟𝑡 be the Jain fairness
index (cf. Equation 10) calculated on the average
received rates [18], 𝑟𝑖, (cf. Equation 9) at time 𝑡
over all players. The unfairness at time t is

defined as √1 − 𝐽𝑎𝑖𝑛𝐹𝑎𝑖𝑟𝑡 . A lower value

implies a more fair allocation.
 𝑟𝑖 = 𝑑𝑜𝑤𝑛𝑙𝑜𝑎𝑑𝑒𝑑 𝑏𝑦𝑡𝑒𝑠𝑡𝑖𝑚𝑒 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 (9)

 𝐽𝐹𝐼 = (∑ 𝑟𝑖𝑛𝑖=1)2𝑛 ∑ 𝑟𝑖2𝑛𝑖=1 (10)

Int. J. Advanced Networking and Applications

Volume: 11 Issue: 02 Pages: 4236-4243 (2019) ISSN: 0975-0290

4241

v. Re-buffering ratio [5]: is the ratio of the time
spent in
re-buffering and the total playtime of the stream
Equation 11.
 𝑅𝑒 − 𝑏𝑢𝑓𝑓𝑒𝑟𝑖𝑛𝑔 𝑟𝑎𝑡𝑖𝑜 = 𝑡𝑜𝑡𝑎𝑙 𝑟𝑒 − 𝑏𝑢𝑓𝑓𝑒𝑟𝑖𝑛𝑔 𝑡𝑖𝑚𝑒𝑒𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛 (11)

C. Videos

One of the videos (Elephant’s dream) used in the

experiments is shown below. Other videos are Sintel, Big

Buck Bunny, The Swiss Account and Red Bull

Playstreets.

TABLE I. ELEPHANT’S DREAM: VIDEO LEVELS,
BITRATES AND RESOLUTIONS

Video level Bitrate (kbps) Resolution
l0 46.0 320x240
l1 91.0 320x240
l2 131.0 320x240
l3 180.0 480x360
l4 222.0 480x360
l5 261.0 480x360
l6 328.0 480x360
l7 382.0 480x360
l8 523.0 854x480
l9 594.0 854x480
l10 796.0 1280x720
l11 1000.0 1280x720
l12 1200.0 1280x720
l13 1500.0 1280x720
l14 2100.0 1920x1080
l15 2400.0 1920x1080
l16 3000.0 1920x1080
l17 3400.0 1920x1080
l18 3800.0 1920x1080
l19 4200.0 1920x1080

VI. RESULTS

The first experiment illustrates five players competing at a

20Mbps bottleneck link. Table 1 gives the results. C-

DASH outperforms FESTIVE and the Conventional.

TABLE II. BOTTLENECK COMPETITION

 C-DASH FESTIVE Conventional

Utilization 0.88 0.76 0.67

Unfairness 0.053 0.079 0.194

Instability 0.163 0.250 0.310

Re-

buffering

0.241 0.356 0.420

Inefficiency 0.111 0.237 0.327

The second experiment illustrates five players competing

at a 20Mbps bottleneck link and stopping or pausing

during the experiment. Table 2 gives the results. C-DASH

outperforms FESTIVE and the Conventional.

TABLE III. VIDEO PLAYERS START, STOP AND PAUSE

 C-DASH FESTIVE Conventional

Utilization 0.84 0.76 0.63

Unfairness 0.098 0.127 0.216

Instability 0.178 0.232 0.378

Re-buffering 0.267 0.389 0.437

Inefficiency 0.123 0.265 0.356

The third experiment illustrates five players competing at

a 100Mbps bottleneck link with increasing number of

players up to 20. Table 3 gives the results. C-DASH

outperforms FESTIVE and the Conventional.

TABLE IV. INCREASING PLAYERS

 C-DASH FESTIVE Conventional

Utilization 0.82 0.74 0.60

Unfairness 0.128 0.156 0.243

Instability 0.213 0.299 0.365

Re-buffering 0.287 0.390 0.443

Inefficiency 0.142 0.211 0.346

The fourth and final experiment illustrates five players

competing at a 20Mbps bottleneck link in bandwidth

varying conditions. Table 4 gives the results. C-DASH

outperforms FESTIVE and the Conventional.

TABLE V. TIME-VARYING BANDWIDTH

 C-DASH FESTIVE Conventional

Utilization 0.77 0.72 0.59

Unfairness 0.159 0.198 0.267

Instability 0.265 0.315 0.477

Re-buffering 0.294 0.410 0.458

Inefficiency 0.180 0.274 0.398

VII. CONCLUSION

The performance of today’s adaptive video streaming

players (DASH) is severely hindered by overlapping ON-

OFF patterns that occurs during a streaming session. High

switching rates, freezing and skipping annoy users

resulting in poor user-QoE. This paper attempts to

overcome the ON-OFF problem by keeping players aware

of each other’s downloads and inter-request times. Using

this a player is able to better predict future player actions

and reschedule their downloads to produce least conflicts

with others. If a player’s start segment download overlaps

with the end of one or more players’ current downloads

within a certain time t1 it waits until the download of

Int. J. Advanced Networking and Applications

Volume: 11 Issue: 02 Pages: 4236-4243 (2019) ISSN: 0975-0290

4242

others completes before starting its own download.

Conversely if too many players are sharing the bottleneck

link a player will hold of its download by a time t2

enabling others to move towards completion of their

downloads. This reduces the overlap of its download with

other players. Both these methods help reduce competition

at the bottleneck and produces a more balanced sharing of

network resources.

REFERENCES

[1] Akhshabi, Saamer, Lakshmi Anantakrishnan,

Constantine Dovrolis, and Ali C. Begen. "Server-

based traffic shaping for stabilizing oscillating

adaptive streaming players." In Proceeding of the 23rd

ACM workshop on network and operating systems

support for digital audio and video, pp. 19-24. ACM,

2013.

[2] Bagci, Kadir Tolga, Kemal Emrecan Sahin, and A.

Murat Tekalp. "Compete or collaborate: Architectures

for collaborative DASH video over future networks."

IEEE Transactions on Multimedia 19, no. 10 (2017):

2152-2165.

[3] Bentaleb, Abdelhak, Ali C. Begen, and Roger

Zimmermann. "SDNDASH: Improving QoE of HTTP

adaptive streaming using software defined

networking." In Proceedings of the 24th ACM

international conference on Multimedia, pp. 1296-

1305. ACM, 2016.

[4] Berners-Lee, Tim, Roy Fielding, and Henrik Frystyk.

"Hypertext transfer protocol--HTTP/1.0." (1996).

[5] Bouten, Niels, Steven Latré, Jeroen Famaey, Werner

Van Leekwijck, and Filip De Turck. "In-network

quality optimization for adaptive video streaming

services." IEEE Transactions on Multimedia 16, no. 8

(2014): 2281-2293.

[6] Claeys, Maxim, Steven Latre, Jeroen Famaey, and

Filip De Turck. "Design and evaluation of a self-

learning HTTP adaptive video streaming client."

IEEE communications letters 18, no. 4 (2014): 716-

719.

[7] De Cicco, Luca, Vito Caldaralo, Vittorio Palmisano,

and Saverio Mascolo. "TAPAS: a Tool for rApid

Prototyping of Adaptive Streaming algorithms." In

Proceedings of the 2014 Workshop on Design,

Quality and Deployment of Adaptive Video

Streaming, pp. 1-6. ACM, 2014.

[8] De Cicco, Luca, Vito Caldaralo, Vittorio Palmisano,

and Saverio Mascolo. "Elastic: a client-side controller

for dynamic adaptive streaming over http (dash)." In

2013 20th International Packet Video Workshop, pp.

1-8. IEEE, 2013.

[9] Georgopoulos, Panagiotis, Yehia Elkhatib, Matthew

Broadbent, Mu Mu, and Nicholas Race. "Towards

network-wide QoE fairness using openflow-assisted

adaptive video streaming." In Proceedings of the 2013

ACM SIGCOMM workshop on Future human-centric

multimedia networking, pp. 15-20. ACM, 2013.

[10] He, Jian, Zheng Xue, Di Wu, Dapeng Oliver Wu, and

Yonggang Wen. "CBM: online strategies on cost-

aware buffer management for mobile video

streaming." IEEE Transactions on Multimedia 16, no.

1 (2014): 242-252.

[11] Irondi, Iheanyi, Qi Wang, and Christos Grecos.

"Empirical evaluation of H. 265/HEVC-based

dynamic adaptive video streaming over HTTP

(HEVC-DASH)." In SPIE Photonics Europe, pp.

91390L-91390L. International Society for Optics and

Photonics, 2014.

[12] Jiang, Junchen, Vyas Sekar, and Hui Zhang.

"Improving fairness, efficiency, and stability in http-

based adaptive video streaming with festive."

InProceedings of the 8th international conference on

Emerging networking experiments and technologies,

pp. 97-108. ACM, 2012.

[13] Khan, Koffka, and Wayne Goodridge. "B-DASH:

broadcast-based dynamic adaptive streaming over

HTTP." International Journal of Autonomous and

Adaptive Communications Systems 12, no. 1 (2019):

50-74.

[14] Khan, Koffka, and Wayne Goodridge. "Energy aware

Ad-Hoc on demand multipath distance vector

routing." International Journal of Intelligent Systems

and Applications 7, no. 7 (2015): 50-56.

[15] Khan, Koffka, and Wayne Goodridge. "Server-based

and network-assisted solutions for adaptive video

streaming." International Journal of Advanced

Networking and Applications 9, no. 3 (2017): 3432-

3442.

[16] Khan, Koffka, and Wayne Goodridge. "S-MDP:

Streaming with Markov Decision Processes." IEEE

Transactions on Multimedia (2019).

[17] Kleinrouweler, Jan Willem, Sergio Cabrero, Rob van

der Mei, and Pablo Cesar. "Modeling stability and

bitrate of network-assisted HTTP adaptive streaming

players." In Teletraffic Congress (ITC 27), 2015 27th

International, pp. 177-184. IEEE, 2015.

[18] Li, Zhi, Xiaoqing Zhu, Joshua Gahm, Rong Pan, Hao

Hu, Ali C. Begen, and David Oran. "Probe and adapt:

Rate adaptation for http video streaming at

scale." IEEE Journal on Selected Areas in

Communications 32, no. 4 (2014): 719-733.

Int. J. Advanced Networking and Applications

Volume: 11 Issue: 02 Pages: 4236-4243 (2019) ISSN: 0975-0290

4243

[19] Lohmar, Thorsten, Torbjörn Einarsson, Per Fröjdh,

Frédéric Gabin, and Markus Kampmann. "Dynamic

adaptive HTTP streaming of live content." In 2011

IEEE International Symposium on a World of

Wireless, Mobile and Multimedia Networks, pp. 1-8.

IEEE, 2011.

[20] Mansy, Ahmed, Bill Ver Steeg, and Mostafa Ammar.

"Sabre: A client based technique for mitigating the

buffer bloat effect of adaptive video flows."

InProceedings of the 4th ACM Multimedia Systems

Conference, pp. 214-225. ACM, 2013.

[21] Michalos, M. G., S. P. Kessanidis, and S. L.

Nalmpantis. "Dynamic Adaptive Streaming over

HTTP." Journal of Engineering Science &

Technology Review 5, no. 2 (2012).

[22] Nikmanzar, Sepideh, Akbar Ghaffarpour Rahbar, and

Amin Ebrahimzadeh. "On-Demand Video Streaming

Schemes Over Shared-WDM-PONs." IEEE

Transactions on Circuits and Systems for Video

Technology 23, no. 9 (2013): 1577-1588.

[23] Oyman, Ozgur, and Sarabjot Singh. "Quality of

experience for HTTP adaptive streaming services."

IEEE Communications Magazine 50, no. 4 (2012):

20-27.

[24] Petrangeli, Stefano, Jeroen Famaey, Maxim Claeys,

Steven Latré, and Filip De Turck. "QoE-driven rate

adaptation heuristic for fair adaptive video

streaming." ACM Transactions on Multimedia

Computing, Communications, and Applications

(TOMM) 12, no. 2 (2016): 28.

[25] Robinson, David C., Yves Jutras, and Viorel Craciun.

"Subjective video quality assessment of HTTP

adaptive streaming technologies." Bell Labs Technical

Journal 16, no. 4 (2012): 5-23.

[26] Schmidt, Mark S., Praveen N. Moorthy, and Baozhou

Li. "Server-side adaptive bit rate control for dlna http

streaming clients." U.S. Patent Application

14/991,091, filed January 8, 2016.

[27] Sodagar, Iraj. "The mpeg-dash standard for

multimedia streaming over the internet." IEEE

multimedia 18, no. 4 (2011): 62-67.

[28] Stockhammer, Thomas. "Dynamic adaptive streaming

over HTTP--: standards and design principles." In

Proceedings of the second annual ACM conference on

Multimedia systems, pp. 133-144. ACM, 2011.

[29] Wamser, Florian, David Hock, Michael Seufert,

Barbara Staehle, Rastin Pries, and Phuoc Tran‐Gia.
"Using buffered playtime for QoE‐oriented resource
management of YouTube video streaming."

Transactions on Emerging Telecommunications

Technologies 24, no. 3 (2013): 288-302.

[30] Wei, Sheng, and Viswanathan Swaminathan. "Cost

effective video streaming using server push over

HTTP 2.0." In Multimedia Signal Processing

(MMSP), 2014 IEEE 16th International Workshop on,

pp. 1-5. IEEE, 2014.

[31] Yin, Xiaoqi, Vyas Sekar, and Bruno Sinopoli.

"Toward a principled framework to design dynamic

adaptive streaming algorithms over http." In

Proceedings of the 13th ACM Workshop on Hot

Topics in Networks, p. 9. ACM, 2014.

[32] Yin, Xiaoqi, Vyas Sekar, and Bruno Sinopoli.

"Toward a principled framework to design dynamic

adaptive streaming algorithms over HTTP." In

Proceedings of the 13th ACM Workshop on Hot

Topics in Networks, p. 9. ACM, 2014.

[33] Zhao, Shuai, Zhu Li, Deep Medhi, PoLin Lai, and

Shan Liu. "Study of user QoE improvement for

dynamic adaptive streaming over HTTP (MPEG-

DASH)." In 2017 International Conference on

Computing, Networking and Communications

(ICNC), pp. 566-570. IEEE, 2017.

AUTHOR’S PROFILE

Koffka Khan received the M.Sc.,

and M.Phil. degrees from the

University of the West Indies. He is

currently a PhD student and has up-

to-date, published numerous papers

in journals & proceedings of

international repute. His research

areas are computational intelligence, routing protocols,

wireless communications, information security and

adaptive streaming controllers.

Wayne Goodridge is a Lecturer in

the Department of Computing and

Information Technology, The

University of the West Indies, St.

Augustine. He did is PhD at

Dalhousie University and his

research interest includes computer

communications and security.

	I. INTRODUCTION
	II. Literature review
	III. Overlapping ON Problem
	IV. Collaborative Methodology
	V. Experimental Setup
	A. Details of DASH-based Experiment Setup
	B. QoE Metrics
	C. Videos

	VI. Results
	VII. Conclusion
	References

