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------------------------------------------------------------------------ABSTRACT-------------------------------------------------------------- 
The performance of today’s adaptive video streaming players (DASH) is severely hindered by overlapping ON-OFF patterns that 

occurs during a streaming session. High switching rates, freezing and skipping annoy users resulting in poor user-QoE. 

This paper attempts to overcome the ON-OFF problem by keeping players aware of each other’s downloads and 

inter-request times. Using this a player is able to better predict future player actions and reschedule their downloads 

to produce least conflicts with others. If a player’s start segment download overlaps with the end of one or more 

players’ current downloads within a certain time t1 it waits until the download of others completes before starting its 

own download. Conversely if too many players are sharing the bottleneck link a player will hold of its download by a 

time t2 enabling others to move towards completion of their downloads. This reduces the overlap of its download with 

other players. Both these methods help reduce competition at the bottleneck and produces a more balanced sharing of 

network resources.      
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I. INTRODUCTION 

Video over IP (VoIP) is becoming more and more 

important as we move further into the twenty-first century. 

The Internet is still growing rapidly and more uses are 

being found for video users. These include real-time 

online visual assistance, video learning, live event 

streaming, smart HDTVs, mobile phones, gaming devices, 

computers and visual communication among others. As 

the content quality is improving to meet end-user demands 

the bandwidth requirement for such devices is rapidly 

increasing. With increasing bandwidth demands and 

profuse video content, it is becoming likely that two or 

more adaptive streaming players may have to share a 

network bottleneck. This will result in a competition for 

available bandwidth. Example scenarios where this can 

take place are, when a number of people in the same 

household view similar or different videos simultaneously. 

Here, the domestic broadband access link is the shared 

bottleneck. Another instance of such competition is when 

many users watch the same live event (such as World Cup 

Soccer) online. The shared bottleneck may be an edge 

network link in this scenario. It has been previously 

observed that such competition can lead to performance 

issues [2] [1] [16] [13]. 

The concept of adaptive video streaming (see Figure 1) is 

based on the idea to adapt the bandwidth required by the 

video stream to the throughput available on the network 

path from the stream source to the client [1]. These 

algorithms can live at the server [15], at an intermediate 

network device [15] or at the client [16]. With client-side 

protocols it is the player that decides what bitrate to 

request for any fragment, improving server-side scalability 

[15]. A benefit of this protocol is that the player can 

control its playback buffer size by dynamically adjusting 

the rate at which new fragments are requested. The 

adaptation is performed by varying the quality of the 

streamed video.  

 

Fig. 1. DASH-based Adaptive Video Streaming 

Multiple video segments constitute a video stream lasting 

from as little as 2 seconds to as much as having a 10 

second chunk delivery rate. Segments are encoded and 

stored on the server in numerous quality versions, termed 

representations. Each version has a unique resolution, 

bitrate and/or quality. A client downloads segments using 

HTTP GET statements [4]. However, with adaptive 

streaming a client might request subsequent segments at 

different quality levels to manage varying network 

conditions, based on an estimation bandwidth. To do this it 

uses a manifest file that contains information about the 

video segments. Protocols and standards such as MPEG 

Dynamic Adaptive Streaming over HTTP (DASH) [27], 

Apple HTTP Live Streaming (HLS) [21], Microsoft 

Smooth Streaming (MSS) [6] or Adobe HTTP Dynamic 

Streaming (HDS) [32] typically use a media playlist that 

contains a list of uniform resource identifiers (URIs) that 

are addresses to media segments [1].  

The process of determining the ideal representation for 

each segment to enhance the user’s experience is pivotal to 

adaptive streaming. The controller algorithm estimates the 
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network bandwidth and chooses the next bitrate level 

corresponding to the available network bandwidth. 

Variations in the available bandwidth will result in jerky 

playback and disruption of the video playback if the 

throughput falls below the bit rate requirement of the 

video. This is the major challenge in adaptive video 

streaming [15]. Selecting appropriate bitrate levels helps 

to maximize the user experience. Generally, higher bitrates 

and resolutions will give better user experience. For 

example, if a client approximates that there is 9.5Mb/s 

available in the network, it might request the server to 

stream video compressed to the highest video rate 

available, 9.5Mb/s, or the next rate below, 9.3Mb/s. If the 

client picks a video rate that is too high, the viewer will 

experience annoying re-buffering events; if they pick a 

streaming rate that is too low, the viewer will experience 

poor video quality. In both cases, the experience degrades 

[23] [3] [9] and user may take their viewing elsewhere. It 

is therefore important for a video streaming service to 

select the highest safe video rate [33]. 

To the authors review of existing literature there is no 

known findings of adaptive streaming players with 

collaborative player-to-player communications (see Figure 

2) with preemptive and non-preemptive scheduling. We 

propose, implement and test two collaborative 

communication methods (CCMs) for DASH-based 

players. It primarily aims to obtain better fair sharing of 

resources in streaming environments for example a 

company’s local area network (LAN).  

 

Fig. 2. Collaborative DASH-based Adaptive Video 

Streaming 

In Section II we provide a literature review. We describe 

DASH-based adaptive video players. Some of these 

players are part of our experiments which is presented in 

later sections. This work provides a body of work that 

builds on DASH overlapping ON problem which is 

presented in Section III. It provides a detailed 

methodology on the collaborative methods on which this 

work is based on in Section IV. This is followed by the 

experimental setup in Section V. Results is given in 

Section VI. Finally, in Section VII we present the 

conclusion. 

II. LITERATURE REVIEW 

FINEAS (Fair In-Network Enhanced Adaptive Streaming) 

is proposed [24], which is capable of increasing clients’ 
Quality of Experience (QoE) and achieving fairness in a 

multi-client setting. A key element of their protocol is an 

in-network system of coordination proxies in charge of 

facilitating fair resource sharing among clients. They 

claim that fairness is achieved without explicit 

communication among clients. In addition, viewers using 

HTTP Adaptive Streaming (HAS) without sufficient 

bandwidth undergo frequent quality switches that hinder 

their watching experience. This situation, known as 

instability, is produced when HAS players are unable to 

accurately estimate the available bandwidth. Moreover, 

when several players stream over a bottleneck link, their 

individual adaptation techniques may result in an unfair 

share of the channel. These are two detrimental issues in 

HAS technology, which is otherwise very attractive. The 

authors [17] describe an implementation in the form of an 

HTTP proxy server and show that both stability and 

fairness are strongly improved. In [6] several network-

assisted streaming protocols which rely on active 

cooperation between video streaming applications and the 

network are explored. They use a Video Control Plane 

which enforces Video Quality Fairness among concurrent 

video flows generated by heterogeneous client devices. A 

max-min fairness optimization problem is solved at run-

time. They compare two protocols to actuate the optimal 

solution in an SDN network: the first one allocating 

network bandwidth slices to video flows, the second one 

guiding video players in the video bitrate selection. 

In [26] the bandwidth estimate generated at the server is 

used for server-side adaptive bit encoding of digital media 

streams. The server application measures the network 

bandwidth available to the individual client for TCP/IP 

[14] downloads of media and accordingly adjusts stream 

bit rate and composition to allow the client to retrieve the 

media stream with sufficient time margin to minimize the 

occurrence of underflow of client playback buffers. The 

root cause of the instability problem is that, in Steady-

State, a player goes through an ON-OFF activity pattern in 

which it overestimates the available bandwidth [1]. They 

propose a server-based traffic shaping procedure that can 

considerably lower such oscillations. Their procedure is 

only triggered when oscillations are identified, and so the 

shaping rate is dynamically adjusted. This ensures that the 

player receives the highest available video profile without 

being unstable. Using HTTP for video streaming 

significantly increases the request overhead due to the 

segmentation of the video content into HTTP resources 

[30]. This overhead becomes even more substantial when 

non-multiplexed video and audio segments are deployed. 

The authors investigate the request overhead problem by 

employing the server push technology in the new HTTP 

2.0 protocol. They develop a set of push strategies that 

actively deliver video and audio content from the HTTP 

server without requiring a request for each individual 

segment.  

Chunk scheduling with stateless bitrate selection causes 

feedback loops, bad bandwidth estimation, bitrate switches 

and unfair bitrate choices [12]. This paper, which portrays 

the FESTIVE control algorithm, confirms that numerous 

problems occur when multiple bitrate-adaptive players 

(adaptation over HTTP) share a bottleneck link [31]. It 

uncovers the fact that the feedback signal the player 
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receives is not a true reflection of the network state 

because of overlaying the adaptation logic over several 

layers. HTTP-based video delivery issues are elucidated: 

(1) the granularity of the control decisions, (2) the 

timescales of adaptation, (3) the nature of feedback from 

the network and (4) the interactions with other 

independent control loops in lower layers of the 

networking stack. FESTIVE uses an abstract player state 

to analyze commercial players: (1) schedule a video chunk 

for download, (2) select bitrate for chunk, and (3) estimate 

bandwidth.  It identifies root causes of undesirable 

interactions with abstract state player framework and saw 

the need to guide the tradeoffs between stability, fairness 

and efficiency. As a result, the authors created a robust 

video adaptation algorithm, which tried to achieve: (1) 

Fairness – equal allocation of network resources, (2) 

Efficiency – get highest bitrates for maximum user 

experience, and (3) Stability – avoid needless bitrate 

switches. The eventual contributions were a family of 

adaptation algorithms using the following steps: (1) 

Randomized chunk scheduling: to avoid sync biases in 

network state sampling, (2) Stateful bitrate selection:  to 

compensate between biased bitrate and estimated 

bandwidth interaction, (3) Delayed update: to account for 

stability and efficiency tradeoff, and (4) Bandwidth 

estimator: to increase robustness to outliers. 

The authors in [18], who proposed the PANDA algorithm, 

noted that since TCP throughput observed by a client 

would indicate the available network bandwidth, it could 

be used as a reliable reference for video bitrate selection. 

However, this is no longer true when HTTP Adaptive 

Streaming (HAS) [5] becomes a substantial fraction of the 

total network traffic or when multiple HAS clients 

compete at a network bottleneck. It was observed that the 

discrete nature of the video bitrates results in difficulty for 

a client to correctly perceive its fair-share bandwidth. 

Hence, this fundamental limitation would lead to video 

bitrate oscillation and other undesirable behaviors that 

negatively impact the video viewing experience. They 

offered a design at the application layer using a “probe and 

adapt” principle for video bitrate adaptation (where 

“probe” refers to trial increment of the data rate, instead of 

sending auxiliary piggybacking traffic), which is akin, but 

also orthogonal to the transport-layer TCP congestion 

control. The authors illustrate a four-step state for an HAS 

rate adaptation algorithm: (1) Estimating: the algorithm 

starts by estimating the network bandwidth that can 

legitimately be used, (2) Smoothing: is then noise-filtered 

to yield the smoothed version, with the aim of removing 

outliers, (3) Quantizing: the continuous is then mapped to 

the discrete video bitrate, possibly with the help of side 

information such as client buffer size [29] [10] [20] etc…, 

and (4) Scheduling: the algorithm selects the target 

interval until the next download request. The advantages 

of PANDA are as follows. Firstly, as the bandwidth 

estimation by probing is quite accurate, one does not need 

to apply strong smoothing. Secondly, since after a 

bandwidth drop, the video bitrate reduction is made 

proportional to the TCP throughput reduction, PANDA is 

very sensitive to bandwidth drops. 

III. OVERLAPPING ON PROBLEM 

In a DASH model the video is pre-encoded and stored on 

the server. Each video stream is broken up into segments 

or chunks of seconds each. The streaming process for each 

client is divided into sequential segment downloading 

steps. Variable durations between consecutive segment 

requests is incorporated in the model. At the beginning of 

downloading of each sequence two important decisions are 

made: (1) the video bitrate of the next segment to be 

downloaded, and (2) the target inter-request time. The 

client also determines the time it takes to download the nth 

segment.  If the download duration is shorter than the 

target delay, the client has an off time or wait time. 

Otherwise, the download starts immediately. 

The output of adaptive video players following the DASH 

model can be either that the next segment download starts 

immediately after the current download is finished 

(buffering mode) or that the inter-request time is set to a 

fixed duration which forces OFF periods (steady-state 

mode). The main drawback of DASH is that when there 

are competing video flows, the estimated bandwidth based 

on the observed TCP throughput during the on-intervals 

does not represent the fair-share bandwidth. Possible use-

cases that result from improper bandwidth estimation are: 

(1) where competing players overestimate their fair share, 

they may request video representations with a higher 

bitrate than the fair share which leads to network 

congestion. When TCP detects congestion, the players in 

turn estimate lower bandwidth than their previous fair 

share estimate and select a lower video bitrate level. This 

environment creates a repeating oscillatory scenario and 

results in instability. (2) where some players overestimate 

their fair share while others underestimate their fair share. 

In this situation players may converge to a stable 

equilibrium but without fair allocation of bandwidth. (3) 

where players estimate their fair share correctly but yet the 

total bandwidth capacity of the network is not utilized. 

This occurs as players may be requesting sub-optimal 

video bitrate levels. 

We now give various multi-player scenarios of bandwidth 

allocation issues that arises when ON periods overlap. Let 

us consider a simple model. Assume that players are in 

steady state. There is a request for a new segment every T 

seconds. There are three adaptive players sharing a 

bottleneck with bandwidth B. We ignore the TCP model 

and accept a single connection getting the entire 

bandwidth B. Let us assume the network bandwidth share 

is equal. We let network bandwidth measures at the player 

be bi. Thus, for equal sharing of bandwidth the following 

condition holds: b1=b2=b3. Therefore, b1+b2+b3=B, 

anytime during the streaming process. 

First, take the case of non-overlapping ON periods. This is 

where all players ON periods are non-overlapping during 

segment download, see Figure 1. Each player measures the 

bandwidth as B. Thus, b1+b2+b3>B. Consequently, each 

player overestimates their bandwidth share by a factor of 

three. Players request higher bitrates than the channel 

provides. Network congestion occurs. Players now 

measure a smaller bandwidth, which is less than their 

previous estimate. They switch back to a lower video 
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bitrate by requesting a lower quality segment. The up and 

down movement in bitrate selection creates a repeating 

oscillatory scenario. Instability is the outcome. 

 

Fig. 3. Non-overlapping ON periods 

In the second case, we look at ON periods that fall within 

each other. In multi-player streaming, the situation can 

arise, where the ON period of one player falls within the 

ON period of the other players, see Figure 2. This situation 

occurs if one or two player requests a segment with a low 

bitrate and another player requests a segment with a high 

bitrate. The players requesting the lower bitrate estimates a 

bandwidth of B/3, while the other player estimates a 

bandwidth that is more than B/3. This means that player 

three overestimates the bandwidth. This overestimation by 

one of the three players can still result in the three players 

converging to a stable equilibrium. However, the player 

who estimates the higher bandwidth share requests a 

higher video bitrate. This creates an unfair bandwidth 

allocation to all players. The players who request low 

bitrates will experience buffer underruns and poor video 

quality, due to flickering. 

 

Fig. 4. ON periods within each other 

For the third and final case we look at ON periods in 

perfect alignment. This situation occurs where ON periods 

of the three players align perfectly, see Figure 3. All 

players estimate a bandwidth of B/3. Thus, b1+b2+b3=B. 

The three players estimate their bandwidth share correctly. 

However, bandwidth underutilization still occurs. To 

illustrate, suppose the video has two quality levels, q1 and 

q2. The ON periods of all three players align perfectly. 

This case is stable, if b1<B/3, b2>B/3, b3<B/3 and 

b1+b2+b3<B. However, all players request quality level q1. 

This causes bandwidth underutilization, even though it is 

stable and fair. The players who obtain low bandwidth will 

experience buffer underruns and poor video quality, due to 

flickering. 

 

Fig. 5. Perfectly aligned ON periods 

IV. COLLABORATIVE METHODOLOGY 

When an adaptive video player starts a download, it 

broadcasts a 5-tuple to other players. This 5-tuple consists 

of (1) start download time, (2) requested segment 

download size, (3) inter-request time from last download, 

(4) player ID or IP address and (5) a message sequence 

number. During streaming this broadcast is performed by 

all players. Each player utilizes this information to 

determine (1) the approximate time the specified player 

would take to download the current segment, that is, the 

end download time, (2) the future inter-request time of the 

present download. This is simply the last inter-request 

time but could be made more accurate by taking multiple 

download samples for example 20. (3) the freshness of the 

data from other players which is obtained from the most 

recent broadcasted sequence numbers. 

Using the 5-tuple information from other players each 

player performs cognitive download scheduling. It does 

this by using the known player start times. Having this 

knowledge enables a player to determine bottleneck 

conflicts if too many players are currently using the link. 

The player then adopts a strategy by waiting t seconds 

before it starts its download. This should reduce player 

contention for the bottleneck at that time stamp. Figure 6 

shows an example. Here player i’ has started a download 

and informed player i. Now player i can use this 

knowledge to delay its next segment download (assuming 

it does so with other players in the network being taken 

into consideration (not shown in diagram)). 

 

Fig. 6. Cognitive download scheduling 

In addition, each player performs predictive downloading 

scheduling. It does this by utilizing the estimated player 

end times or inter-request times. A player waiting to 

download can use the estimated end download times or 

inter-request times to determine when to best start its next 

download. In this case instead of knowing the other 

players start download times the player may only 

determine that the other players are either still 

downloading or have just completed. If the other players 

are still downloading, then the player only has the 

estimated end download times. However, if the player had 

just finished downloaded the player can estimate the next 

start download time. In this way the player can delay its 

download by t seconds to reduce contention at the 
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bottleneck link. Figure 7 shows player i downloading a 

video segment. Here player i’ has to estimate the end 

download time of player i. It does this and starts it 

download a bit later (diagram does not show other players) 

to avoid network contention amongst players. 

 

Fig. 7. Predictive download scheduling 

The main constituents of an Linear Programming (LP) 

problem are the objective function and set of constraints. 

The constraints usually come from the environment, from 

which the pursuit of the objective becomes tangible. The 

environment contains principal factors (for instance 

restrictions, difficulties) obstructing an entity from fulling 

its desire or objective. The of four parts of any linear 

program are: (1) a set of decision variables, (2) 

parameters, (3) objective function and (4) a set of 

constraints. The contention resolution for each player is 

solved using a series on linear programming constraints 

with the optimal funcion maximizing the bandwidth. We 

call our solution collaborative DASH (C-DASH). 

V. EXPERIMENTAL SETUP 

A. Details of DASH-based Experiment Setup 

A virtual network is setup on the same host machine 

creating a custom emulation framework. Our setup 

consists of client players, video servers, and a bottleneck 

link. The server resides on a Windows 10 machine. All 

experiments are performed on a Windows 10 client with 

an Intel(R) Core(TM)i7-5500U CPU 2.40GHz processor, 

16.00 GB physical memory, and an Intel(R) HD Graphics 

processor. It serves video data to the client(s) who are on a 

Ubuntu operating system hosted on VMware. The virtual 

machine is allocated 12GB of physical memory. TAPAS is 

installed on Ubuntu 15.04 Linux. The TAPAS [7] 

Adaptive Video Controller client makes different video 

segment bitrate level requests to the Apache server. 

TAPAS allow multiple instances of the player to be 

created enabling multi-client scenarios. This work 

involves the interaction between adaptive streaming 

algorithm at the controller and TAPAS player (cf. Figure 

6). All traffic between clients and servers go through the 

bottleneck, which uses VMware settings which allow 

bandwidth limits to be set during the experiment. TAPAS 

support both the HTTP Live Streaming (HLS) and 

Dynamic Adaptive Streaming over HTTP (DASH) format. 

Algorithms that uses the C-DASH protocol was tested and 

shown to work on both MPEG-DASH [28], and Apple 

HTTP Live Streaming (HLS) [25]. This makes it useful 

for video on demand (VOD) [22] and live streaming [19], 

for example, real-time video chats. However, the MPEG-

DASH standard is used for testing in this research paper, 

because it makes the experiments more comparable to the 

ones in the research literature, for example, [8]. The ten 

minute long MPEG-DASH video sequence “Elephant’s 

Dream”1 is encoded at twenty different bitrates, between 

46 Kbps to 4200Kbps and five different resolutions, 

between 320x240 to 1920x1080, is used to run the 

experiments (cf. Table II). The video is encoded at 24 

frames per second (fps) using the AVC1 codec [11]. 

Fragment duration of 2s is used, and is recorded in the 

mpd playlist accordingly. All the DASH files (.m4s 

fragments and .mpd playlists) are placed on the Apache 

server. We implemented three client-side algorithms in the 

TAPAS controller. The conventional approach is present 

by default, and is used as a baseline in which to compare 

against other algorithms. TAPAS is lightweight in built, 

thus allowing the same receiving host to run a large 

number of separate video player instances at the same time 

at different command line interfaces. Thus, it allows the 

multi-client scenarios which are essential to the work in 

this paper.  

B. QoE Metrics 

 
i. The utilization metric [18] is defined as the 

aggregate throughput during an experiment 

divided by the available bandwidth in that 

experiment (cf. Equation 6, where 𝑡𝑝𝑖  is the 

throughput at time 𝑖 and 𝑏𝑤 is the experimental 

available bandwidth).  

 𝑈𝑡𝑖𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛 =  ∑ 𝑡𝑝𝑖𝑛−1𝑖=0𝑏𝑤                                                         (6) 

 

ii. Instability: The instability for player 𝑖 at time 𝑡 is 

given in Equation 7, where 𝑤(𝑑)  =  𝑘 – 𝑑 is a 
weight function that puts more weight on more 
recent samples. 𝑘 is selected as 20 seconds. 

 𝐼𝑛𝑠𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦 =  ∑ |𝑟𝑖,𝑡−𝑑 − 𝑟𝑖,𝑡−𝑑−1| ∗ 𝑤(𝑑)𝑘−1𝑑=0 ∑ 𝑟𝑖,𝑡−𝑑𝑘−1𝑑=0 ∗ 𝑤(𝑑)         (7) 

 

iii. Inefficiency: The inefficiency at time 𝑡 is given in 
Equation 8. Consider N players sharing a 
bottleneck link with bandwidth, 𝑤, with each 

player 𝑥, playing a bitrate, 𝑏𝑥,𝑡, at time 𝑡. A value 

close to zero implies that the players in aggregate 
are using as high an average bitrate as possible to 
improve user experience. 𝐼𝑛𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 =  |∑ 𝑏𝑥,𝑡− 𝑊𝑥 𝑤 |                                (8) 

 

iv. Unfairness: Let 𝐽𝑎𝑖𝑛𝐹𝑎𝑖𝑟𝑡  be the Jain fairness 
index (cf. Equation 10) calculated on the average 
received rates [18], 𝑟𝑖, (cf. Equation 9) at time  𝑡 
over all players. The unfairness at time t is 

defined as √1 − 𝐽𝑎𝑖𝑛𝐹𝑎𝑖𝑟𝑡 . A lower value 

implies a more fair allocation. 
 𝑟𝑖 =  𝑑𝑜𝑤𝑛𝑙𝑜𝑎𝑑𝑒𝑑 𝑏𝑦𝑡𝑒𝑠𝑡𝑖𝑚𝑒 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙                                      (9) 

 𝐽𝐹𝐼 =   (∑ 𝑟𝑖𝑛𝑖=1 )2𝑛 ∑ 𝑟𝑖2𝑛𝑖=1                                                          (10) 
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v. Re-buffering ratio [5]: is the ratio of the time 
spent in  
re-buffering and the total playtime of the stream 
Equation 11. 
 𝑅𝑒 − 𝑏𝑢𝑓𝑓𝑒𝑟𝑖𝑛𝑔 𝑟𝑎𝑡𝑖𝑜 =  𝑡𝑜𝑡𝑎𝑙 𝑟𝑒 − 𝑏𝑢𝑓𝑓𝑒𝑟𝑖𝑛𝑔 𝑡𝑖𝑚𝑒𝑒𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛     (11) 

C. Videos 

One of the videos (Elephant’s dream) used in the 

experiments is shown below. Other videos are Sintel, Big 

Buck Bunny, The Swiss Account and Red Bull 

Playstreets. 

TABLE I.  ELEPHANT’S DREAM: VIDEO LEVELS, 
BITRATES AND RESOLUTIONS 

Video level  Bitrate (kbps) Resolution  
l0 46.0 320x240 
l1 91.0 320x240 
l2 131.0 320x240 
l3 180.0 480x360 
l4 222.0 480x360 
l5 261.0 480x360 
l6 328.0 480x360 
l7 382.0 480x360 
l8 523.0 854x480 
l9 594.0 854x480 
l10 796.0 1280x720 
l11 1000.0 1280x720 
l12 1200.0 1280x720 
l13 1500.0 1280x720 
l14 2100.0 1920x1080 
l15 2400.0 1920x1080 
l16 3000.0 1920x1080 
l17 3400.0 1920x1080 
l18 3800.0 1920x1080 
l19 4200.0 1920x1080  

VI. RESULTS 

The first experiment illustrates five players competing at a 

20Mbps bottleneck link. Table 1 gives the results. C-

DASH outperforms FESTIVE and the Conventional. 

TABLE II.  BOTTLENECK COMPETITION 

 C-DASH FESTIVE Conventional 

Utilization 0.88 0.76 0.67 

Unfairness 0.053 0.079 0.194 

Instability 0.163 0.250 0.310 

Re-

buffering 

0.241 0.356 0.420 

Inefficiency 0.111 0.237 0.327 

 

The second experiment illustrates five players competing 

at a 20Mbps bottleneck link and stopping or pausing 

during the experiment. Table 2 gives the results. C-DASH 

outperforms FESTIVE and the Conventional. 

 

 

 

TABLE III.  VIDEO PLAYERS START, STOP AND PAUSE 

 C-DASH FESTIVE Conventional 

Utilization 0.84 0.76 0.63 

Unfairness 0.098 0.127 0.216 

Instability 0.178 0.232 0.378 

Re-buffering 0.267 0.389 0.437 

Inefficiency 0.123 0.265 0.356 

 

The third experiment illustrates five players competing at 

a 100Mbps bottleneck link with increasing number of 

players up to 20. Table 3 gives the results. C-DASH 

outperforms FESTIVE and the Conventional. 

TABLE IV.  INCREASING PLAYERS 

 C-DASH FESTIVE Conventional 

Utilization 0.82 0.74 0.60 

Unfairness 0.128 0.156 0.243 

Instability 0.213 0.299 0.365 

Re-buffering 0.287 0.390 0.443 

Inefficiency 0.142 0.211 0.346 

 

The fourth and final experiment illustrates five players 

competing at a 20Mbps bottleneck link in bandwidth 

varying conditions. Table 4 gives the results. C-DASH 

outperforms FESTIVE and the Conventional. 

TABLE V.  TIME-VARYING BANDWIDTH 

 C-DASH FESTIVE Conventional 

Utilization 0.77 0.72 0.59 

Unfairness 0.159 0.198 0.267 

Instability 0.265 0.315 0.477 

Re-buffering 0.294 0.410 0.458 

Inefficiency 0.180 0.274 0.398 

VII. CONCLUSION 

The performance of today’s adaptive video streaming 

players (DASH) is severely hindered by overlapping ON-

OFF patterns that occurs during a streaming session. High 

switching rates, freezing and skipping annoy users 

resulting in poor user-QoE. This paper attempts to 

overcome the ON-OFF problem by keeping players aware 

of each other’s downloads and inter-request times. Using 

this a player is able to better predict future player actions 

and reschedule their downloads to produce least conflicts 

with others. If a player’s start segment download overlaps 

with the end of one or more players’ current downloads 

within a certain time t1 it waits until the download of 
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others completes before starting its own download. 

Conversely if too many players are sharing the bottleneck 

link a player will hold of its download by a time t2 

enabling others to move towards completion of their 

downloads. This reduces the overlap of its download with 

other players. Both these methods help reduce competition 

at the bottleneck and produces a more balanced sharing of 

network resources.  
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